.jpg)
| Computing IRR manualy using interpolation methods. | |||||||
| Data | |||||||
| Initial outlay | -10,010 | ||||||
| FCF in year 1 | 1000 |
| |||||
| FCF in year 2 | 3000 | UNEVEN CASH FLOW | |||||
| FCF in year 3 | 6000 | ||||||
| FCF in year 4 | 7000 | ||||||
| How to find IRR manualy? | |||||||
| there are 3 steps to find IRR(UNEVEN CASH FLOW) | |||||||
| 1 step. You have to find the annuity in FCF | |||||||
| since the FCF is Uneven cash flow, so you have to find the assumed annuity | |||||||
| The assumed annuity as follows | |||||||
| 1000 | 17000 | ||||||
| 3000 | no ofyears | ||||||
| 6000 | |||||||
| 7000 | 17,000 |
| Assumed annuity | ||||
| 17000 | 4 | ||||||
| 2 step. using annuity table to find the range of interpolation | ||||||||
| a. Intially outlay devided by assumed annuity | ||||||||
| intial outlay = 10,010 | ||||||||
| assumed annuity = 4250 | ||||||||
| thus, | 10,010 | 2.36% | using this percent to find the range of interpolation in the annuity table | |||||
| 4250 | ||||||||
| b. present value of an annuity table (extracts) | ||||||||
| n | 16% | 17% | 18% | 19% | 20% | |||
| 1 | 0.862 | 0.855 | 0.847 | 0.84 | 0.833 | |||
| 2 | 1.605 | 1.585 | 1.566 | 1.547 | 1.528 | |||
| 3 | 2.246 | 2.21 | 2.174 | 2.14 | 2.106 | |||
| 4 | 2.798 | 2.743 | 2.69 | 2.639 | 2.589 |
| near with 2.36 | |
| 5 | 3.274 | 3.199 | 3.127 | 3.058 | 2.991 | |||
| 6 | 3.685 | 3.589 | 3.498 | 3.41 | 3.326 | |||
| until 50 | xxxx | xxxx | xxxx | xxxx | xxxx | |||
| now you have to find the value that close with 2.36% | ||||||||
| 1. take a look at n first, n=4 | ||||||||
| 3 step. after u've found the range of interpolation, the next step as follows | |||||||
| a. your ranges of interpolation are 19% and 20% | |||||||
| b. the FCF have to dicounted back to the present using present value of interest factor | |||||||
| c. using the present value interest factor to find the Discounted value of FCF (UNVEN CASHFLOW) | |||||||
| n | 16% | 17% | 18% | 19% | 20% | ||
| 1 | 0.862 | 0.855 | 0.847 | 0.84 | 0.833 | ||
| 2 | 0.743 | 0.731 | 0.718 | 0.706 | 0.694 | ||
| 3 | 0.641 | 0.624 | 0.609 | 0.593 | 0.579 | ||
| 4 | 0.552 | 0.534 | 0.516 | 0.499 | 0.482 | ||
| 5 | 0.476 | 0.456 | 0.437 | 0.419 | 0.402 | ||
| 6 | 0.41 | 0.39 | 0.37 | 0.352 | 0.335 | ||
| until 50 | xxxx | xxxx | xxxx | xxxx | xxxx | ||
| 19% | 20% | ||||||
| FCF in year 1 | 1000 | 0.84 | 840 | FCF in year 1 | 1000 | 0.833 | 833 |
| FCF in year 2 | 3000 | 0.706 | 2118 | FCF in year 2 | 3000 | 0.694 | 2082 |
| FCF in year 3 | 6000 | 0.593 | 3558 | FCF in year 3 | 6000 | 0.579 | 3474 |
| FCF in year 4 | 7000 | 0.499 | 3493 | FCF in year 4 | 7000 | 0.482 | 3374 |
| Total | 10009 | Total | 9763 | ||||
| d. therefore, 19%= 10,009, 20%=9763 | |||||||
| last but not least, using the interpolation formula to find the IRR | |||||||
| numerator= | 19%(a)- | Iniatial outlay | |||||
| Denominator= | 19%(a)- | 20%(b) | |||||
| 19% = 10,009 | |||||||
| 20%=9763 | |||||||
| Initial outlay = 10,010 | |||||||
| Hence, | 10,009- | 10010= | -1 | c | |||
| 10009- | 9763= | 246 | d | ||||
| interpolation formula | |||||||
| aX | c | Xb-a | |||||
| d | |||||||
| thus, 19%X | -1 | X(20%-19%) | |||||
| 246 | |||||||
| IRR is 19% | |||||||
Comments
Post a Comment